Sep. 2023 # **Devices for Gas Measurement** Supporting Gas Analysis with Optical Devices # **Optical Gas Measurement** # Features of optical-based measurement Gas detection through optical absorption is generally approached by using infrared (IR) light or ultraviolet (UV) light. Thanks to their unique absorption wavelengths, the density of gases can be measured easily through molecular absorption. The absorption of the vibrating gas molecules increases particularly in the infrared region, making it ideal for measuring various gases. After selecting the suitable device, according to the targeted absorption gas and its surrounding environment, the optical method is by far the most optimal for high-speed response, high-accuracy, and long life gas measurement. As an expert in photonics technology and in the creation of optical devices, Hamamatsu Photonics presents you a wide-range of light sources and detectors perfectly suited for the measurement of gas. # Absorption spectroscopy based on "intramolecular vibration" - Great light absorption efficiency - Superior gas selectivity - Superior maintainability due to less sensitivity deterioration # Absorption spectroscopy based on "electron transitions" - Greater heat resistance - Greater resistance to background light - Does not overlap with absorption wavelengths of water # Main advantages of optical based technology compared to other sensing technologies for gas measurement | Comparable technologies | Advantages of optical gas measurement | | | |---------------------------------|---|--|--| | Electro-chemical type detection | High-speed response The rapid response of an optical sensor makes it suitable for real-time gas monitoring. It enables higher accuracy measurement by integrating and averaging the large number of data per unit time. | | | | MOS type detection | High precision Optical gas detection is less affected by coexisting gases and water vapor since it detects the specific absorption wavelength of each gas; high selective detection is performed with optical gas measurement. | | | | Catalytic type detection | Long life Contactless detection with optical measurement contributes to make the sensor a robust system while avoiding deterioration. Therefore, the frequency of maintenance will be reduced. | | | # Technologies for optical gas measurement | Method | Features | Wavelength | Measured objects | Light sources | Detectors | Details | |--------|---|------------|-----------------------------|---------------|---|---------| | NDIR | Compact, inexpensive, superior maintainability | IR | Specific gas | LED
Lamp | Quantum type detector
Thermal type detector
(with band-pass filter) | P04 | | FTIR | Optimal for analysis of complex gases and organic compounds | IR | Specific gas
Complex gas | Lamp | Quantum type detector
Thermal type detector | P05 | | TDLAS | Trace gas measurement
with high throughput | IR | Single molecule of gas | Laser | Quantum type
detector | P06 | | DOAS | Simple structure,
wide selection of wavelengths | UV to IR | Specific gas
Complex gas | Lamp | Quantum type
detector | P07 | # NDIR (Non-Dispersive Infrared) # Compact, inexpensive, superior maintainability NDIR (Non-Dispersive Infrared) detection method uses an optical filter to extract and detect only the wavelengths required for gas measurement. This method offers superior reliability and maintainability due to a simple detection principle, which uses no moving parts. Mostly containing cost-effective optical parts, it is non-dispersive and does not use image sensors. High cost-performance optical parts are used in many measuring devices, including but not limited to portable safety (explosive gas detection) devices and fixed environmental measurement devices. ## ■ Applications CO₂ measurement in hydroponics farms Measuring CO₂ concentration required for photosynthesis. Portable gas sensor Gas leak detection at factories and other work sites. # ■ Recommended products # Mid infrared LEDs L15893, L15894, L15895 series - High output - Three types available: for CO2, CH4, or reference light - Surface mount types are also available # Xenon flash lamps L13651 series and others - Instantaneously high-peak output - Low-heat generation - Continuous spectrum: UV to MIR ### InAsSb photovoltaic detectors P16112/P16612/P16849 series - Equipped with a band-pass filter supporting CO2 and CH4 - Two-element types are available - Surface mounted types are also available # FTIR (Fourier Transform Infrared Spectroscopy) # Optimal for analysis of complex gases and organic compounds FTIR (Fourier Transform Infrared Spectroscopy) acquires spectral information with arithmetic processing from an interference signal (interferogram), which is generated by an interferometer, structured from beam splitters and mirrors. Because it can be used to obtain wide-band spectral information, it is suitable for measuring gases with a wide absorption band such as volatile organic compounds (toluene, benzene, chlorofluorocarbons, etc.). It can also measure complex gases with a wide range of absorption wavelength peaks. ### ■ Applications Vehicle exhaust gas test Concentration analysis of complex gas in vehicle exhaust gas. Flue gas monitor Analysis of complex gases emitted from factories and the like. # ■ Recommended products # InAsSb photovoltaic detectors P16112/P16612/P16849 series - Supports 5 µm band - Excellent linearity - TE-cooled types and large photosensitive area products are available InAsSb photovoltaic detectors P16114-011MN / P16614-011CN Supports a wide range of gas absorption - wavelengths (8um band, 10um band) - TE-cooled types are available - Excellent linearity Type II superlattice infrared detector P15409-901 - Supports 14 µm band - Liquid nitrogen cooled type - Excellent linearity # **TDLAS** (Tunable Diode Laser Absorption Spectroscopy) **DOAS** (Differential Optical Absorption Spectroscopy) # Realizes high-speed, high-accuracy gas measurement TDLAS (Tunable Diode Laser Absorption Spectroscopy) is a measurement method in which a DFB (distributed feedback) type semiconductor laser is wavelength swept at high speed by modulating an applied current. This method enables a high-speed and high-accuracy measurement combination using wavelength modulation spectroscopy, represented by the 2f method. DFB semiconductor lasers are applicable in the field of isotope measurement due to their extremely narrow emission linewidth, which selectively measures the absorption of gases derived from different isotopes of the same molecule. ### Applications Industrial process control Process control with real-time measurement of industrial gas. Flue gas monitor Analysis of SOx and NOx in gases emitted from factories and the like. # ■ Recommended products CW Quantum cascade lasers (QCL) L1200x series - MIR semiconductor laser - Distributed Feedback structure - Fast wavelength tuning by current modulation InAsSb photovoltaic detectors with preamp - Supports a wide range of gas absorption wavelengths (8 µm band, 10 µm band) - High-speed response (100MHz) - Built-in preamplifier Infrared detection modules with preamp C12494-211L/-222S - High-speed response - TE-cooled type, high sensitivity # Simple structure, wide selection of wavelengths DOAS (Differential Optical Absorption Spectroscopy) is a method that outputs the concentration of the target gas by calculating the difference in the absorption spectrum and is optimal for measuring NOx and SOx. While gas-measuring instruments generally use infrared light, DOAS often uses visible and ultraviolet lights. The absorption spectrum of water is out of ultraviolet region, therefore, this method is effective for measurement in environments that are easily affected by absorption of water such as in the atmosphere. ### ■ Applications Vehicle exhaust gas measurement Real-time monitoring of vehicle exhaust gas Air quality monitoring Analysis of pollutant gases in the atmosphere # ■ Recommended products Xenon flash lamps L13651 series and others - Instantaneously high-peak output - Low-heat generation - Continuous spectrum: UV to MIR Xenon lamps L2273 and others - High stability - Continuous spectrum: UV to NIR **Deuterium lamps** L2D2 series, S2D2 series - High stability - Long life - Continuous spectrum in UV range 0.5 1 10 Wavelength (µm) 11 12 13 # **Light Source Comparison** # **LEDs** # For gas measurement in compact and portable devices - Wavelength: 3.3 µm (CH₄) / 3.9 µm (reference light) / 4.3 µm (CO₂) - Lower power consumption, higher reliability, and higher-speed response than lamps - 10 times the radiant flux of previous products # Lasers # For trace gas measurement - Wavelength: 4 μm to 10 μm - High directivity, high output, high reliability, high-speed response - Adaptable into in-situ measurement - High-resolution measurement by narrow line width # Lamps # For multiple gas measurement - Continuous spectrum: UV to MIR - Instantaneously high-peak output - Low-heat generation #### Time response LEDs * 2 $^{\hspace{-0.1cm} \wedge} \hspace{-0.1cm} ^{\hspace{-0.1cm} \hspace{-0$ 2 2 Narrow 2 2 2 ☆☆ $\stackrel{\wedge}{\simeq}$ Lasers Line spectrum Wide 2222 * $\stackrel{\wedge}{\boxtimes}$ \$\$ ☆☆ Lamps # **LEDs / Lasers** #### Mid infrared LEDs L15893 series, L15894 series, L15895 series Our Mid infrared LEDs' peak emission wavelengths of 3.3 μ m, 3.9 μ m and 4.3 μ m respectively are achieved using our unique crystal growth and process technology. Their output has significantly increased compared to previous products (approx. 10 times the radiant flux). Wavelength ··· IR Method ······ NDIR # **■** Emission spectrum ## ■ Radiant flux #### KLEDB0553 # CW Quantum Cascade Lasers (QCL) L1200X series QCL is a semiconductor laser with an emission in the mid-infrared region that has attracted attention as a new light source for mid-infrared spectroscopy. Our cutting-edge, proprietary manufacturing processes and extensive experience enable us to offer high reliability devices for spectroscopic applications. # ■ Accessory: CW controller C16174-01 Ultra-low noise controller unit assigned to work with CW QCL. It easily controls QCL's temperature and QCL itself via PC. This is a suitable controller for TDLAS as it is capable to modulate the output current to the laser. Using advanced signal processing, the current noise of this device is significantly lower than similar systems. # Lamps #### Xenon flash lamps L13651 series and others This is a pulsed light source with a high momentary peak output. This multi-wavelength light source has a continuous spectrum, spanning from the ultraviolet region to the infrared region, making it suitable for a wide range of measurement and analysis. Wavelength ··· UV to IR Method ······ NDIR DOAS # ■ Spectral irradiance (typ.) ■ Emission pulse waveform at 7.5 µm (typ.) # Deuterium lamps L2D2 series, S2D2 series It is a highly stable lamp with a strong emission spectrum in the ultraviolet. This light source has good characteristics of life, stability, and output required for an analytical lamp. Wavelength ... UV Method DOAS # Xenon lamps L2273 and others It has both high luminance and high-color temperature, and it emits a continuous spectrum from ultraviolet to infrared, so it is the optimal light source for a variety of analyses. Using high-performance cathodes, both higher stability and longer life are achieved compared to conventional lamps. Wavelength ··· UV to IR Method ······ DOAS 10 Devices for Gas Measurement COTHB0109EA KOTHB0109EA # **Detector Comparison** # Quantum type detectors Used in pair with LED: for relatively simple applications Used in pair with QCL: for applications requiring comparative precision - High sensitivity - High-speed response # Thermal type detectors For relatively low-end applications - Spectral response is not wavelength-dependent - Less affected by ambient temperature | Detector | Sensitivity | Wavelength
dependence | Time response characteristics | Cooling | Cost benefit | |------------------------|-------------|--------------------------|-------------------------------|---------------------------------|--------------| | Quantum type detectors | *** | Yes | ተ ተተተ | Cooled (partially not required) | ☆☆ | | Thermal type detectors | ☆☆ | None | ☆ | Non-cooled | *** | # Absorption wavelengths of major gases and spectral response of a detector (typ.) # **Quantum Type Detectors** ### InAsSb photovoltaic detectors P16112/P16612 series etc. These sensors have achieved high sensitivity in the mid-infrared region using Hamamatsu unique crystal growth technology and process technology. These products do not use lead, mercury or cadmium, which are RoHS Directive restricted substances. Hamamatsu offers a lineup of products that support the 5 µm band, 8 µm band, and 10 µm band. # Superiority of the InAsSb photovoltaic detector (compared with our conventional product: PbSe) ## High-speed response Because it is capable of high-speed response of about 10 to 100 times speed, it can be used in combination with a high-speed pulse drive light source, such as QCL. ## Excellent linearity It has nearly 1000 times better linearity, so no dimming is required for high-power light sources. Also, its wide dynamic range contributes to improved S/N. # Excellent output stability It has superior short-term and long-term output stability, making correction of analysis devices easier and improving maintainability. # Wide operating temperature Unlike PbSe, it offers high reliability, as its characteristics are not subject to degradation even when used for a long time in a high-temperature environment. | Product | Operating
temperature | |--------------------------------|--------------------------| | InAsSb photovoltaic detectors | -40 to +85 ℃ | | PbSe photoconductive detectors | -30 to +50 ℃ | Measurement Method # **Quantum Type Detectors** # InAsSb photovoltaic detectors (with band-pass filter) P16112/P16612/P16849 series These InAsSb photovoltaic detectors use a band-pass filter suitable for CH₄ (3.3 μ m), reference light (3.9 μ m), and CO₂ (4.26 μ m). Two-element types are available (reference light is also detected). Wavelength ··· IR Method ····· NDIR #### InAs photovoltaic detectors P10090 series The features of these sensors include low noise, high-speed response, and high reliability. These do not contain lead, which is a RoHS Directive restricted substance, and have sensitivity up to the 3 μm band, which is similar to conventional PbS photoconductive detectors. # Type II superlattice infrared detector P15409-901, C15780-401 This infrared detector has a superlattice structure in which InAs and GaSb are layered alternately, with an extended spectral response range to the 14 μm band. It does not contain mercury or cadmium, which is part of the RoHS Directive of restricted substances, and it is a replacement for the conventional MCT photovoltaic detector. Modules with preamps are also available. Wavelength ··· IR Method ······ FTIR # Infrared detection modules with preamp C12494-222S, C12494-211L These are amplifier-integrated modules that can detect infrared light simply by connecting a DC power supply. Since their spectral response range is wide, these are suitable for detecting numerous gases. These support 1 MHz. We also provide an ultra-compact InAsSb photovoltaic device with a preamplifier built into the CAN package. and can be used in combination with a QCL. # **Thermal Type Detectors** #### Thermopile detectors T11361-01, T11722-11, T11722-12 These sensors generate thermoelectromotive force in proportion to the incident infrared light energy. Since they have no wavelength dependence, their spectral response is determined by the transmittance characteristics of window material. By attaching an external band-pass filter, customers can apply them to various types of gas density measurements. Wavelength ··· IR Method ····· NDIR # Other detectors #### Mini-spectrometers C10082CA, C13053MA, C13555MA This is a palm-sized spectrometer (polychromator) consisting of an optical system, image sensor, and circuit. Optical spectra can be easily collected by connecting to a PC via USB. #### MPPC modules C13365 series, C13366 series MPPC is a photon-counting device using multiple APD pixels operating in Geiger mode. This module equipped with an amplifier, temperature-compensation circuit, and high-voltage power supply circuit required for MPPC operation, can measure very low-level light simply by providing a power supply. # Si photodiodes S12698 series These Si photodiodes have achieved high reliability for monitoring ultraviolet light. They exhibit low-sensitivity deterioration under ultraviolet light irradiation and are suitable for applications such as monitoring intense ultraviolet light sources. ## Side-on type photomultiplier tubes The side-on photomultiplier tube is a photodetector with the characteristics of extremely high sensitivity and high-speed response. Hamamatsu has a wide lineup which are integrated in many analytical devices. #### **Main Products** #### Opto-semiconductors - Si photodiodes - APD - MPPC[®] - Photo IC - Image sensors - PSD - Infrared detectors - LED - Optical communication devices - Automotive devices - X-ray flat panel sensors - MEMS devices - Mini-spectrometers - Opto-semiconductor modules #### **Electron Tubes** - Photomultiplier tubes - Photomultiplier tube modules - Microchannel plates - Image intensifiers - Xenon lamps / Mercury-xenon lamps - Deuterium lamps - Light source applied products - Laser applied products - Microfocus X-ray sources - X-ray imaging devices ### **Imaging and Processing Systems** - Scientific cameras - Spectroscopic and optical measurement systems - Ultrafast photometry systems - Life science systems - Medical systems - Non-destructive inspection products - Semiconductor manufacturing support systems - Material research systems #### **Laser Products** - Single chip laser diodes - Laser diode bar modules - Quantum cascade lasers - Applied products of semiconductor lasers - Solid state lasers - Laser related products #### Sales Offices ### HAMAMATSU PHOTONICS K.K. 325-6, Sunayama-cho, Naka-ku, Hamamatsu City, Shizuoka Pref. 430-8587, Japan Telephone: (81)53-452-2141, Fax: (81)53-456-7889 E-mail: intl-div@hq.hpk.co.jp #### China: #### HAMAMATSU PHOTONICS (CHINA) CO., LTD. Main Office 1201, Tower B, Jiaming Center, 27 Dongsanhuan Beilu, Chaoyang District, 100020 Beijing, P.R. China Telephone: (86)10-6586-6006, Fax: (86)10-6586-2866 E-mail: hpc@hamamatsu.com.cn #### Shanghai Branch 4905 Wheelock Square, 1717 Nanjing Road West, Jingan District, 200040 Shanghai, P.R. China Telephone: (86)21-6089-7018, Fax: (86)21-6089-7017 E-mail: hpcsh@hamamatsu.com.cn #### Shenzhen Branch 14F China Merchants Tower 1#, No. 1166 Wanghai Road, Shekou, Nanshan District, Shenzhen, P.R. China Telephone: (86)755-2165-9058, Fax: (86)755-2165-9056 E-mail: hpcsz@hamamatsu.com.cn #### Wuhan Branch Room 1005 Fanyue City T2 Building, No. 19 Guanshan Avenue, East Lake High-tech District, Wuhan 430075, Hubei, P.R. China Telephone: (86)27-5953-8219 # E-mail: hpcwh@hamamatsu.com.cn #### HAMAMATSU PHOTONICS TAIWAN CO., LTD. Main Office 13F-1, No.101, Section 2, Gongdao 5th Road, East Dist., Hsinchu City 300046, Taiwan (R.O.C.) Telephone: (886)3-659-0080, Fax: (886)3-659-0081 E-mail: info@hamamatsu.com.tw ## U.S.A.: Taiwan: #### **HAMAMATSU CORPORATION** # Main Office 360 Foothill Road, Bridgewater, NJ 08807, U.S.A Telephone: (1)908-231-0960, Fax: (1)908-231-1218 # California Office 2875 Moorpark Ave., San Jose, CA 95128, U.S.A. Telephone: (1)408-261-2022, Fax: (1)408-261-2522 #### Germany, The Netherlands, Poland, Denmark, Israel: HAMAMATSU PHOTONICS DEUTSCHLAND GMBH Main Office Arzbergerstr. 10, 82211 Herrsching am Ammersee, Germany Telephone: (49)8152-375-0, Fax: (49)8152-265-8 E-mail: info@hamamatsu.de #### Netherlands Office Transistorstraat 7, 1322 CJ Almere, The Netherlands Telephone: (31)36-5405384, Fax: (31)36-5244948 E-mail: info@hamamatsu.nl # Poland Office 10 Ciolka Street, 126-127 01-402 Warsaw, Poland Telephone: (48)22-646-0016, Fax: (48)22-646-0018 E-mail: poland@hamamatsu.de #### **Danish Office** Lautruphoj 1-3, 2750 Ballerup, Denmark Telephone: (45)88-74-53-10 Email: info@hamamatsu.dk #### Israel Office (HAMAMATSU PHOTONICS ISRAEL LTD.) Ha-Menofim 10 st., third floor, 4672561 Herzliya, Israel E-mail: Info@hamamatsu.co.il #### France, Switzerland, Belgium, Spain: HAMAMATSU PHOTONICS FRANCE S.A.R.L. #### Main Office 19 Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10 E-mail: infos@hamamatsu.fr #### Swiss Office Dornacherplatz 7, 4500 Solothurn, Switzerland Telephone: (41)32 625 60 60, Fax: (41)32 625 60 61 E-mail: swiss@hamamatsu.ch #### Belgian Office Axisparc Technology, Rue André Dumont 7, 1435 Mont-Saint-Guibert, Belgium Telephone: (32)10 45 63 34, Fax: (32)10 45 63 67 E-mail: info@hamamatsu.be C. Argenters 4, edif 2, Parque Tecnológico del Vallés, 08290 Cerdanyola, (Barcelona), Spain Telephone: (34)93 582 44 30 E-mail: infospain@hamamatsu.es #### North Europe and CIS: #### HAMAMATSU PHOTONICS NORDEN AB Main Office Torshamnsgatan 35, 16440 Kista, Sweden Telephone: (46)8-509-031-00, Fax: (46)8-509-031-01 E-mail: info@hamamatsu.se #### Italy: # HAMAMATSU PHOTONICS ITALIA S.R.L. ### Main Office Strada della Moia, 1 int. 6 20044 Arese (Milano), Italy Telephone: (39)02-93 58 17 33, Fax: (39)02-93 58 17 41 E-mail: info@hamamatsu.it # Rome Office Viale Cesare Pavese, 435, 00144 Roma, Italy Telephone: (39)06-50 51 34 54 E-mail: inforoma@hamamatsu.it #### United Kingdom: #### HAMAMATSU PHOTONICS UK LIMITED Main Office 2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire, AL7 1BW, UK Telephone: (44)1707-294888, Fax: (44)1707-325777 E-mail: info@hamamatsu.co.uk # South Africa Contact: 9 Beukes Avenue, Highway Gardens, Edenvale, 1609. South Africa Telephone/Fax: (27)11-609-0367 MPPC is a registered trademark of Hamamatsu Photonics K.K. (China, EU, Japan, Korea, Switzerland, U.K., U.S.A.) [•] Information in this catalog is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. © 2023 Hamamatsu Photonics K.K. [·] Please thoroughly read the precautions and the prohibited uses included in the user manual before installation and use.