Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biodiversity hotspots for conservation priorities

Abstract

Conservationists are far from able to assist all species under threat, if only for lack of funding. This places a premium on priorities: how can we support the most species at the least cost? One way is to identify ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat. As many as 44% of all species of vascular plants and 35% of all species in four vertebrate groups are confined to 25 hotspots comprising only 1.4% of the land surface of the Earth. This opens the way for a ‘silver bullet’ strategy on the part of conservation planners, focusing on these hotspots in proportion to their share of the world's species at risk.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The 25 hotspots.

Similar content being viewed by others

References

  1. Ehrlich, P. R. Energy use and biodiversity loss. Phil. Trans. R. Soc. Lond. B 344, 99–104 ( 1994).

    Article  ADS  Google Scholar 

  2. Myers, N. Two key challenges for biodiversity: discontinuities and synergisms. Biodiversity Cons. 5, 1025–1034 (1996).

    Article  Google Scholar 

  3. Pimm, S. L., Russell, G. J., Gittleman, J. L. & Brooks, T. M. The future of biodiversity. Science 269, 347–350 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Wilson, E. O. The Diversity of Life (Belknap, Cambridge, Massachusetts, 1992).

    Google Scholar 

  5. Myers, N. Threatened biotas: ‘hotspots’ in tropical forests. Environmentalist 8, 187–208 (1988).

    Article  CAS  Google Scholar 

  6. Myers, N. The biodiversity challenge: expanded hotspots analysis. Environmentalist 10, 243–256 ( 1990).

    Article  CAS  Google Scholar 

  7. Pressey, R. L., Humphries, C. J., Margules, C. R., Vane-Wright, R. I. & Williams, P. H. Beyond opportunism: key principles for systematic reserve selection. Trends Ecol. Evol. 8, 124–128 (1993).

    Article  CAS  Google Scholar 

  8. Prendergast, J. R., Quinn, R. M. & Lawton, J. H. The gaps between theory and practice in selecting nature reserves. Cons. Biol. 13, 484– 492 (1999).

    Article  Google Scholar 

  9. Ginsberg, J. Global conservation priorities. Cons. Biol. 13, 5 (1999).

    Article  Google Scholar 

  10. Dobson, A. P., Rodriguez, J. P., Roberts, W. M. & Wilcove, D. S. Geographic distribution of endangered species in the United States. Science 275, 550–553 ( 1997).

    Article  CAS  Google Scholar 

  11. Reid, W. V. Biodiversity hotspots. Trends Ecol. Evol. 13, 275–280 (1998).

    Article  CAS  Google Scholar 

  12. Prendergast, J. R., Quinn, R. M., Lawton, J. H., Eversham, B. C. & Gibbons, D. W. Rare species, the coincidence of diversity hotspots and conservation strategies. Nature 365, 335–337 (1993).

    Article  ADS  Google Scholar 

  13. Williams, P. et al. A comparison of richness hotspots, rarity hotspots, and complementary areas for conserving diversity of British birds. Cons. Biol. 10, 155–174 (1996).

    Article  Google Scholar 

  14. Vane-Wright, R. I., Humphries, C. J. & Williams, P. H. What to protect?—systematics and the agony of choice. Biol. Cons. 55, 235– 254 (1991).

    Article  Google Scholar 

  15. Williams, P. H., Humphries, C. J. & Vane-Wright, R. I. Measuring biodiversity: taxonomic relatedness for conservation priorities. Aust. Syst. Bot. 4, 665–679 (1991).

    Article  Google Scholar 

  16. Mittermeier, R. A., Myers, N., Gil, P. R. & Mittermeier, C. G. Hotspots: Earth's Biologically Richest and Most Endangered Terrestrial Ecoregions (Cemex, Conservation International and Agrupacion Sierra Madre, Monterrey, Mexico, 1999).

    Google Scholar 

  17. Davis, S., Heywood, V. H. & Hamilton, A. C. (eds) Centres of Plant Diversity (three vols) (World Wide Fund for Nature and International Union for Conservation of Nature and Natural Resources, Gland, Switzerland, 1994–1997 ).

    Google Scholar 

  18. Groombridge, B. (ed.) Global Biodiversity (Chapman and Hall, London, 1992).

    Book  Google Scholar 

  19. Heywood, V. H. (ed.) Global Biodiversity Assessment (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  20. Prance, G. T., Beent J. H., Dransfield, J. & Johns, R. The Tropical Flora Remains Undercollected (Missouri Botanical Garden Scientific Publications, St. Louis, Missouri, in the press).

  21. Nowak, R. Walker's Mammals of the World (Johns Hopkins Univ. Press, Baltimore, Maryland, 1999).

    Google Scholar 

  22. Sibley, C. G. & Monroe, B. L. Distribution and Taxonomy of Birds of the World (Yale Univ. Press, New Haven, Connecticut, 1990).

    Google Scholar 

  23. Uetz, P. & Etzold, T. The EMBL/EBI reptile database. Herpetol. Rev. 27, 175 (1996).

    Google Scholar 

  24. Glaw, F. & Kohler, J. Amphibian species diversity exceeds that of mammals. Herpetol. Rev. 29, 11– 12 (1998).

    Google Scholar 

  25. Eschmeyer, W. M. Catalog of Fishes (California Academy of Sciences, San Francisco, 1998).

    Google Scholar 

  26. Janzen, D. H. How to be a fig. Annu. Rev. Ecol. Systemat. 10, 13–51 (1979).

    Article  Google Scholar 

  27. Farrell, B. D. ‘Inordinate Fondness’ explained: why are there so many beetles? Science 281, 555–557 (1998).

    Article  CAS  Google Scholar 

  28. Gaston, K. J. Regional numbers of insect and plant species. Funct. Ecol. 6, 243–247 (1991).

    Article  Google Scholar 

  29. Strong, D. R., Lawton, J. H. & Southwood, T. R. E. Insects on Plants: Community Patterns and Mechanisms (Blackwell, Oxford, 1984).

    Google Scholar 

  30. Price, P. W. Insect Ecology 3rd edition (Wiley, New York, 1997).

    Google Scholar 

  31. Balmford A. & Long, A. Across-country analyses of biodiversity congruence with current conservation efforts in the tropics. Cons. Biol. 9, 1539–1547 ( 1996).

    Article  Google Scholar 

  32. Williams, P. H., Gaston, K. & Humphries, C. J. Mapping biodiversity value worldwide: combining higher-taxon richness from different groups. Proc. R. Soc. Lond. B 264, 141–148 (1997).

    Article  ADS  Google Scholar 

  33. MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, Princeton, 1967).

    Google Scholar 

  34. Brooks, T. & Balmford, A. Atlantic forest extinctions. Nature 380, 115 (1996).

    Article  ADS  Google Scholar 

  35. Brooks, T., Pimm, S. L. & Collar, N. J. Deforestation predicts the number of threatened birds in Insular Southeast Asia. Cons. Biol. 11, 382–394 (1997).

    Article  Google Scholar 

  36. Brooks, T. M., Pimm, S. L. & Oyugi, J. O. Time lag between deforestation and bird extinction in tropical forest fragments. Cons. Biol. 13, 1140–1150 (1999).

    Article  Google Scholar 

  37. Laurance, W. F. Introduction and synthesis. Biol. Cons. 91, 101–107 (1999).

    Article  Google Scholar 

  38. Gaston, K. J. & Nicholls, A. O. Probable times to extinction of some rare breeding bird species in the United Kingdom. Proc. R. Soc. Lond. B 259, 119–123 (1995).

    Article  ADS  Google Scholar 

  39. Turner, I. M. Species loss in fragments of tropical rain forests: a review of the evidence. J. Appl. Ecol. 33, 200– 209 (1996).

    Article  Google Scholar 

  40. Pimm, S. L. & Askins, R. A. Forest losses predict bird extinctions in Eastern North America. Proc. Natl Acad. Sci. USA 92, 9343–9347 (1995).

    Article  ADS  CAS  Google Scholar 

  41. Cowlinshaw, G. Predicting the pattern of decline of African primate diversity: an extinction debt from historical deforestation. Cons. Biol. 13, 1183–1193 (1999).

    Article  Google Scholar 

  42. Newmark, W. D. Insularization of Tanzanian parks and the local extinction of large mammals. Cons. Biol. 10, 1549–1556 (1996).

    Article  Google Scholar 

  43. Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt. Nature 371, 65–66 (1994).

    Article  ADS  Google Scholar 

  44. Stattersfield, A. J., Crosby, M. J., Long, A. J. & Wege, D. C. Endemic Bird Areas of the World: Priorities for Biodiversity Conservation (Birdlife International, Cambridge, UK, 1998).

    Google Scholar 

  45. Dinerstein, E. et al. The Global 200: Key Ecoregions for Saving Life on Earth (World Wildlife Fund-US, Washington DC, 1996).

    Google Scholar 

  46. Mittermeier, R. A., Myers, N., Thomsen, J. B., da Fonseca, G. A. B. & Olivieri, S. Biodiversity hotspots and major tropical wilderness areas: approaches to setting conservation priorities. Cons. Biol. 12, 516– 520 (1998).

    Article  Google Scholar 

  47. James, A. N., Gaston, K. J. & Balmford, A. Balancing the Earth's accounts. Nature 401, 323–324 (1999).

    Article  ADS  CAS  Google Scholar 

  48. Myers, N. Lifting the veil on perverse subsidies. Nature 392, 327–328 (1999).

Download references

Acknowledgements

We thank P. Robles Gil of Agrupacion Sierra Madre and the scientists listed in Supplementary Information for their help with information and analysis; P. Chambers, S. Norris and M. Prescott for research help; and D. Duthie and J. McNeely for comments on an early draft. We also thank the Mexican company CEMEX for its major financial support, and the MacArthur Foundation and S. Concannon for additional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman Myers.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myers, N., Mittermeier, R., Mittermeier, C. et al. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000). https://doi.org/10.1038/35002501

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35002501

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing